¹⁴O Lifetime Measurement as a Test of the Unitarity of the CKM Matrix

J. T. Burke^{1,2}, S. Freedman^{1,2}, B. Fujikawa², S.W. Leman^{1,2}, P. Vetter², W.T. Winter^{1,2}, D. Wutte²

The best experimental values of the effective weak vector coupling constant Gv come from measurements of the 0^+ -> 0^+ superallowed Fermi beta decay. We are currently measuring the lifetime of $^{14}\mathrm{O}$ to determine the V_{ud} element of the Cabbibo–Kobayashi–Maskawa (CKM) matrix relating the mass and weak eigenstates for quarks. Previous determinations of V_{ud} along with other measurements of V_{us} and V_{ub} have suggested that the CKM matrix is not unitary. This in turn has implications that contradict the standard model.

We measure the lifetime of $^{14}{\rm O}$ which due to its 70.6 second lifetime has to be produced online at the 88" cyclotron with the $^{12}{\rm C}(^3{\rm He,n})^{14}{\rm O}$ reaction. A radioactive beam of $^{14}{\rm O}$, produced by IRIS (Ion Source for Radioactive Isotopes) is implanted into a thin Be foil. After loading the foil for 100 seconds a beam stop is inserted to ensure that no $^{14}{\rm O}$ is implanted on the transfer mechanism. The foil is then transferred under vacuum to a detector system using a magnetically coupled pneumatic transfer arm. The positrons from the $^{14}{\rm O} \rightarrow ^{14}{\rm N} + {\rm e}^+ + {\rm v_e}$ decay are then detected using two detector systems. Each detector consists of two thin $\Delta {\rm E}$ plastic scintillators that operate in coincidence.

A trial run in December 2000 yielded promising results, see figure 1. Another run is scheduled for early spring with an expected 80 target loads at 1 million counts per loading will allow the lifetime to be measured to a precision of 10^{-4} .

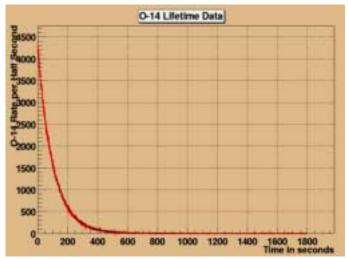


Fig. 1 A typical ¹⁴O decay curve from the trial run in December 2000.

Footnotes

- 1 Physics Department University of California Berkelev
- 2 Nuclear Science Division Lawrence Berkeley National Laboratory